
synopsys.com

Background
In the history of semiconductor verification, few advancements have had more impact than the 

http://synopsys.com


2



3

Machine Learning to the Rescue
Only recently has technology been available to automatically analyze, bin, triage, probe, and discover the root causes of regression 
failures. ML is the key enabler for these capabilities, and it’s not hard to see why. Manual regression debug relies heavily on the 
experience of the verification engineers. Over time, they develop a sense of what types of failures occur and how they can be binned 
appropriately. Years of triage help them more accurately determine the most likely sources for the failures and to assign them to the 
right design and verification engineers for root cause analysis and fixes. Given the enormous amount of information gleaned from 
thousands of regression runs on a project, ML can automatically gain an AI version of this experience and apply it for faster and more 
accurate debug. Figure 2 shows how three stages of the regression loop are accelerated and automated with ML techniques. 

Check-In

RegressionFix

1000s of
Failures

Automated Root
Cause Analysis

Automated
Analysis and

Binning
Automated
Error Triage

Figure 2: Regression testing loop with ML assistance

A solution enabling this much more efficient loop is available today. The Regression Debug Automation (RDA) capabilities in 
Synopsys Verdi® Automated Debug System automatically discover the root causes of regression failures. RDA classifies and analyzes 
raw regression failures using ML and identifies root causes of failures in the design and testbench. RDA focuses on automating 
the regression log analysis, binning, triage, and root cause analysis to reduce the tedious and manual effort associated with the 
typical regression flow. RDA automation helps the users find, understand, and fix the bugs much faster than previously done before, 
improving the overall debug effort by 2X or more.The overall RDA flow is shown in Figure 3. 

Regression Binning 
and Failure Triage
• Categorize failures by 
 extracted characteristics

RCA Report
• Guides design debugging
• Value difference tracing

End User

End User

Debug Facilitator
• Reverse debug 
• Transaction-enabled debugging

Bins of Design Bugs

Bins of Testbench Bugs

RDA

Regression
Failure
Cases

Figure 3: Overall Verdi RDA flow



4

The traditional manual steps of binning and triage on the regression failures are automated, running after the regression, usually 
overnight. Thus, the debug environment is set up at night without any need for user action or intervention. Automated RCA is 
performed on any bugs traced to the design, and reports provided to the designers make it much easier to determine the exact cause 
of the failure. Reporting which signals had different values between passing and failing test runs focuses the debug effort on the right 
part of the design. For bugs in the testbench code, transaction-aware debug and the ability to move both forward and backward in the 
simulation timeline makes it much easier for the verification team to understand and resolve the source of test failures.

Components of the Solution
Verdi RDA incorporates numerous powerful techniques and technologies to automate and accelerate regression debug. The process 
starts by collecting data from the regression run, including simulation log files, value change dump (FSDB) files, and compiled 
simulation databases with the design and Universal Verification Methodology (UVM) testbenches. The collected data feeds into the 
regression binning application, which analyzes the log files for failures and sorts those failures into like categories. This step uses 
unsupervised ML to mine relationships among the ver
/P <</Lanilant22he Einta fro sult (eIt ton 8nilant22dv)8codetnningf eth-mula, and compiled 



5

Stimulus

Same Seed
Analyze and Trace  
Waveform/Design 
Differences to Find 

Root Cause

Stimulus

Port 1

Port 2
DUT

Reference

Port n

Port 1

Port 2

Port n

Port 1

Port 2
DUT

Latest Change

Port n

Port 1

Port 2

Port n

Checker (PASS)

Checker (FAIL)

Design Difference

Different Result

Figure 5: Comparing signal values in DUTRCA

To root cause testbench failures, Debug Facilitator automatically collects debug data for each failure bin. It then facilitates the debug 
with Protocol Analyzer, showing transactions and associated details along with the reverse debug capability to view the source of 
the issues back in time. As shown in Figure 6, failing tests are automatically rerun in simulation with reverse debug and other key 
debug features enabled. Debug Facilitator automatically captures checkpoints during the simulation, essentially the full state of the 
environment at the time of failure. In addition to that, other important checkpoints are captured. These checkpoints can be used once 
the RCA results are brought into Verdi interactive mode. Verdi’s debug features, including reverse debug, enable quick analysis of the 
identified failure root causes in the testbench.

Launch Regression

Simulation

Test Failure?

Debug Rerun

Yes

Yes

Waves for Debug

Verdi Interactive

Restore
Checkpoint



6

Verdi RDA includes valuable features to reduce the number of failures related to unknown (X) values that must be analyzed by 
users. This is important because Xs are notoriously difficult to debug. They typically cover many cycles and levels of logic, and 
they result in many fanout cones of logic with a single root cause. XRCA is a technology that analyzes single and multiple X paths 
to the root causes. If this results in multiple paths being sourced from a single root cause, those paths are grouped into a single 
group. As shown in Figure 7, these results are captured in a report that can be brought into Verdi for analysis and understanding to 
quickly fix the issues. XRCA automatically scans the X signals in FSDB files and can handle large numbers of such signals to reduce 
user debug time.

Configuration and settings
can be checked here

Root cause of following
3 X signals

Root cause of following
12 X signals

Clicking any result will show
the path in Temporal Flow View

Figure 7: Reducing failures due to unknowns in XRCA

XRCA also addresses X-pessimism, another issue that makes debugging unknown-related failures challenging. Simulation assumes 
that any unknown inputs to a gate should be propagated to its output. This can be pessimistic, propagating “false” Xs throughout 
the design. The circuit shown in Figure 8 is a simple example. A signal and its complement are both fed into an “or” gate. If the signal 
is unknown in simulation, an X value is propagated to the output of the gate. However, since the inputs to the “or” function can only 
be 01 or 10, its output will always be 1. Eliminating such a failure from the debug effort is highly beneficial. XRCA includes a formal 
engine that filters out those types of scenarios from the real Xs. It reports both in separate sections so all can be reviewed in Verdi 
but performs full RCA only on the real Xs to increase the throughput of the analysis.



©2022 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available 
at synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.
08/30/22.CS933416539-SRG-Verdi-RDA-WP. Pub: July 2022

X-pessimism
engine 

X / X
X / X

X / 1 O

Sim value / Real value     X / X

X-pessimism

/company/legal/trademarks-brands.html

