Modeling and Simulation of Hybrid Electric Vehicle Power Systems

Min Zhang Synopsys Inc

Reprinted From: Automotive Electronics and Systems Reliability (SP-2088)

2007 World Congress Detroit, Michigan April 16-19, 2007

ABSTRACT

INTRODUCTION

Figure 1 Virtual Hybrid Vehicle System

Table 1 – Design Specifications

Figure 2 Over-current Protection

Figure 3 Under-voltage Protection

Figure 4 3-phase, 12-pulse AC/DC Converter

SIMULATION RESULTS

Figure 8 DC Output Voltage at Different Load Power

Figure 9 Brushless DC Motor Speed

a ______a 1- 6______

Figure 10 Brushless DC Motor Commutation Signal without PWM (level 0)

Figure 11 Brushless DC Motor Commutation Signals with PWM (level 1)

Figure 12 THD of Input Current

Figure 13 DC Output Voltage vs. Input Frequency

Figure 14 Over-current Protection

Figure 15 Under-voltage Protection

CONCLUSION

REFERENCES

CONTACT

