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However, sometimes C code is not available for implementing a virtual ECU. There 
are two main sources for such a situation:

• Protection of intellectual property: All  or major parts of the ECU have been 
developed by a supplier and the OEM interested in building a virtual ECU (e.g. 
to support calibration, a task typically performed by an OEM) has therefore no 
access to the C code.

• Target-specific C code: C code is available but the C code uses pragmas and 
other  target  or  compiler  specific  constructs,  which  prevents  compilation for 
other targets, such as the Windows x86 platform.

To deal with such situations, we have recently integrated a chip simulator into the 
virtual ECU tool Silver. This way,  a virtual ECU can be build based on a hex file  
compiled for the target processor of the ECU. No access to C code is needed in this  
case. Instead of compiling C code for the Windows x86 platform, the chip simulator 
takes the binary compiled for the target processor and simulates the execution of the 
instructions by the target processor on Windows PC. Such a simulation requires
1. a hex file that contains program code and parameters of the simulated functions
2. start addresses of the functions to be simulated
3. an  ASAP2/a2l  file  that  defines  the  conversion  rules  for  the  involved  inputs,

outputs, and characteristics, as well as corresponding addresses
The start addresses of functions can e. g. be extracted from a map file generated 
together  with  the hex file.  Silver  uses the a2l  file to  automatically convert  scaled 
integer  values  to  physical  values  and  vice  versa  during  simulation.  Such  a  chip 
simulation  model  can  also  be  exported  as  SFunction  (mexw32  file)  for  use  in 
MATLAB/Simulink. On a standard PC, hex simulation runs with about 40 MIPS. If 
only simulating selected functions of an ECU, this is fast enough to run a simulation 
much faster than real-time.

The paper is structured as follows: Section 2 describes how to use chip simulation to 
build and run a virtual ECU on PC. In section 3, we report how the resulting ECU 
model has been coupled with numerical optimization to automate engine calibration.
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such as angle positions reached by the crankshaft.  Three kinds of  tasks can be 
distinguished

1. tasks that generate signals, e.g. by reading sensors or CAN messages
2. tasks that compute output signals from input signals
3. tasks that use signals to command actuators or to create CAN messages

The tasks of categories 1 and 3 typically depend on details of the particular chip  
(such as hundreds of registers of on-chip devices), and on the ECU hardware. In 
contrast,  tasks  of  category  2  are  fairly  independent  from such  hardware-specific 
details. To simulate ECU code, it is therefore convenient to run only tasks of category 
2. The required inputs for these tasks can either be taken from measurement files 
(open-loop simulation), or they are computed online by some plant model (closed-
loop simulation), bypassing the tasks of category 1. Likewise, the outputs of category 
2 tasks can be directly compared to measurements (open loop) or fed into the plant 
model (closed loop), bypassing the category 3 tasks. The signal interface between 
categories 1-2 and 2-3 is typically well documented and available, e.g. from the CAN 
specification (DBC file) of the ECU.

This modelling strategy has a very good cost-benefit ratio. In order to simulate also 
the tasks of categories 1 and 3, one has to model hundreds or peripheral and chip  
specific registers, and to build state-machine models for low-level peripherals, such 
as CAN controllers. Technically, this is possible, e. g. with SystemC [5], but hardly  
justified by the added value, at least for the application considered here.

Silver 2.5 uses a specification file (similar to the OIL file used to configure OSEK) to 
specify, which tasks of a hex file to simulate. Silver automatically turns such a spec 
file into an executable Silver module (dll) or SFunction. A typical spec file looks as 
follows:

01 # specification of sfunction or Silver module 
02 hex_file(m12345.hex, TriCore_1.3.1)
03 a2l_file(m12345.a2l)
04 map_file(m12345.map)      # a TASKING or GNU map file
05 frame_file(frame.s)       # assembler code to emulate RTOS
06 frame_set(STEP_SIZE, 10)  # Silver step size in ms
07 frame_set(TEXT_START, 0xa0000000) # location of frame code
08 
09 # functions to be simulated, in order of execution 
10 task_initial(ABCDE_ini)
11 task_initial(ABCDE_inisyn)
12 task_triggered(ABCDE_syn, trigger_ABCDE_syn)
13 task_periodic(ABCDE_20ms, 20, 0)
14 task_periodic(ABCDE_200ms, 200, 0)
15 
16 # interface of the generated sfunction or Silver module
17 a2l_function_inputs(ABCDE)
18 a2l_function_outputs(ABCDE)
19 a2l_function_parameters_defined(ABCDE)

3





7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

���  �����������������������



7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

a  Windows PC with  Intel  i5  processor  at  2.4  GHz and  2.92  GB RAM.  Average 
execution times found this way are shown in Table 1. 
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Infineon tsim 919.15 sec   0.41   
Silver module 9.30 sec   40.80   
Table 1: Performance of chip simulation for the BGLWM example

The  ECU  considered  here  (MED17  with  TC1797)  runs  at  200  MHz  and  has  a 
performance of about 300 MIPS. Nevertheless, on the ECU, the execution time for  
the  3.5  minutes  scenario  is  of  course  exactly  3.5  minutes,  due  to  the  real  time 
constraint. On a PC, this function runs 20 times faster.
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Silver can also turn a spec file as described in section 2.1 into a SFunction, i.e. a 
mexw32 file that runs in Simulink. This is particularly interesting when using chip 
simulation  to  support  automated  optimization  of  parameters,  because  many 
optimization  tools  are  implemented  on  top  of  MATLAB/Simulink.  The  generated 
SFunction accepts all characteristics listed in the spec file as SFunction parameters. 
This  makes  it  easy  to  connect  the  generated  SFunction  with  an  optimization 
procedure. For example, the SFunction can be called with workspace variables that 
are then automatically varied by the optimization procedure between SFunction calls. 
The performance of a generated SFunction is again about 40 MIPS.
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We  have  combined  chip  simulation  as  described  above  with  a  procedure  for 
numerical  optimization  to  compute  optimal  values  for  certain  engine  parameters. 
These computations require an accurate and fast model of the engine function of 
interest. In the past, we have used hand-coded models of ECU functions, developed 
with MATLAB/Simulink. This has been time consuming and error prone. We have 
now  partially  replaced  these  hand-coded  models  with  SFunctions  generated 
automatically by Silver from a given hex file. The generated SFunctions proved to run 
as fast as their hand coded counterparts. The replacement of hand-coded floating-
point  models  by  generated  fixed-point  SFunctions  raises  the  following  problem: 
Some optimization procedures require gradient information to guide the search for 
optimal parameter values: When searching for an � that minimizes f(�), the derivative 
df/dx is to be computed during optimization for different values of x. Finite differences 
are often used here: df/dx is computed as (f(x + h) - f(x)) / h for small h, say h = 10-6. 
If f is computed using chip simulation, x and x+h are often both mapped to the same 
integer, resulting in a zero gradient. As a consequence, the optimization procedure is 
lacking guidance, and might return a suboptimal solution. 
This  section  presents  ideas  how to  overcome this  problem and  some results  of 
numerical  experiments.  There  are  also  so-called  derivative-free  procedures  for 
optimization.  Obviously,  these  are  not  affected  by  the  above  problem.  This  is 
exploited in [8]. 
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Optimization in engine development can frequently be formulated as least-squares 
optimization. The objective is then to minimize a goal function

g  x=∑
i=1

m

f i
2 x

(1)

where x is a vector of n real valued parameters. A typical application is curve fitting. 
The engine controller contains a function model(x, t) that estimates a physical quantity 
that the controller cannot measure directly.  This model needs to be calibrated by 
choosing parameters x such that a measured series of m data points is predicted by 
the model as good as possible, i.e. the squared sum of the m real-valued residuals

f i x=modelx , t i−measurementti  (2)

gets  minimized.  In  typical  applications,  there  are  hundreds  of  data  points  and 
parameters. 

Algorithms  typically  used  for  least-squares  optimization  approximate  for  different 
choices of x the Jacobian 

J i , j  x=lim
h  0

f i s x , j ,h− f i x
h

sk  x , j ,h=if  j=k thenxkhelse xk

(3)

to determine at a given point x in parameter space the direction of steepest descent 
of g(x). Each element of the above Jacobi matrix is typically approximated by a finite 
difference

Di , j x=
f i s x , j ,h− f i x

h
(4)

with sufficiently small h, say h = 10 -6.
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Engine  controllers  are  frequently  implemented  using  fixed-point  code,  i.e.  all  
computations  are  performed  using  integers,  not  floating  point  numbers.  As  a 
consequence, when implementing the goal function  g
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In general, when optimizing goal functions implemented using chip simulation with 
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rugged landscape seen in  Fig.  2d and  h.  The constant  factor  k is  introduced to 
compensate this. For example, choosing k = 10 averages the derivatives across 10 
grid points, which reduces the noise generated by integer rounding. 

For given x, each element of the matrix H(x)
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One  interesting  point  is  cross-comparison  of  found  solutions:  The  hand  coded 
Simulink model generated a solution xOptSimulink with 

gSimulink(xOptSimulink) = 0.0148
while  optimisation  with  chip  simulation  generated  a  slightly  different  solution 
xOptChipsim with

gChipsim(xOptChipsim) = 0.0149
Cross-comparison shows that both goal functions define slightly different optima:

gSimulink(xOptChipsim) = 0.0200
gChipsim(xOptSimulink) = 0.0217

The goal function gChipsim is however a bit accurate model of the computation of the 
real engine controller, while gSimulink is a hand-coded model with a certain modeling 
error. We therefore believe that on the real engine controller, the solution found by 
chip simulation performs effectively better (0.0149) than the one found by the hand-
coded Simulink model (0.0217).
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As demonstrated above, an ECU hex file compiled for some target processor can be 
executed by the virtual ECU tool Silver on Windows PC, either open-loop driven by 
measurements or in closed-loop with a vehicle model. Depending on the application,  
selected ECU functions are simulated, or nearly the entire ECU. As shown in section 
3, such chip simulations can be coupled with optimisation procedures.

This kind of simulation opens new possibilities to move development tasks from road, 
test rig or HiL to PCs, where they can be processed faster, cheaper or better in some 
respect, without requiring access to the underlying C code. Daimler currently uses 
this innovative simulation approach to support controls development for gasoline and 
diesel engines, see also [8]. Other applications, such as online calibration on PC via 
XCP seem to be doable as well.
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