

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

However, sometimes C code is not available for implementing a virtual ECU. There
are two main sources for such a situation:

• Protection of intellectual property: All or major parts of the ECU have been
developed by a supplier and the OEM interested in building a virtual ECU (e.g.
to support calibration, a task typically performed by an OEM) has therefore no
access to the C code.

• Target-specific C code: C code is available but the C code uses pragmas and
other target or compiler specific constructs, which prevents compilation for
other targets, such as the Windows x86 platform.

To deal with such situations, we have recently integrated a chip simulator into the
virtual ECU tool Silver. This way, a virtual ECU can be build based on a hex file
compiled for the target processor of the ECU. No access to C code is needed in this
case. Instead of compiling C code for the Windows x86 platform, the chip simulator
takes the binary compiled for the target processor and simulates the execution of the
instructions by the target processor on Windows PC. Such a simulation requires
1. a hex file that contains program code and parameters of the simulated functions
2. start addresses of the functions to be simulated
3. an ASAP2/a2l file that defines the conversion rules for the involved inputs,

outputs, and characteristics, as well as corresponding addresses
The start addresses of functions can e. g. be extracted from a map file generated
together with the hex file. Silver uses the a2l file to automatically convert scaled
integer values to physical values and vice versa during simulation. Such a chip
simulation model can also be exported as SFunction (mexw32 file) for use in
MATLAB/Simulink. On a standard PC, hex simulation runs with about 40 MIPS. If
only simulating selected functions of an ECU, this is fast enough to run a simulation
much faster than real-time.

The paper is structured as follows: Section 2 describes how to use chip simulation to
build and run a virtual ECU on PC. In section 3, we report how the resulting ECU
model has been coupled with numerical optimization to automate engine calibration.

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

such as angle positions reached by the crankshaft. Three kinds of tasks can be
distinguished

1. tasks that generate signals, e.g. by reading sensors or CAN messages
2. tasks that compute output signals from input signals
3. tasks that use signals to command actuators or to create CAN messages

The tasks of categories 1 and 3 typically depend on details of the particular chip
(such as hundreds of registers of on-chip devices), and on the ECU hardware. In
contrast, tasks of category 2 are fairly independent from such hardware-specific
details. To simulate ECU code, it is therefore convenient to run only tasks of category
2. The required inputs for these tasks can either be taken from measurement files
(open-loop simulation), or they are computed online by some plant model (closed-
loop simulation), bypassing the tasks of category 1. Likewise, the outputs of category
2 tasks can be directly compared to measurements (open loop) or fed into the plant
model (closed loop), bypassing the category 3 tasks. The signal interface between
categories 1-2 and 2-3 is typically well documented and available, e.g. from the CAN
specification (DBC file) of the ECU.

This modelling strategy has a very good cost-benefit ratio. In order to simulate also
the tasks of categories 1 and 3, one has to model hundreds or peripheral and chip
specific registers, and to build state-machine models for low-level peripherals, such
as CAN controllers. Technically, this is possible, e. g. with SystemC [5], but hardly
justified by the added value, at least for the application considered here.

Silver 2.5 uses a specification file (similar to the OIL file used to configure OSEK) to
specify, which tasks of a hex file to simulate. Silver automatically turns such a spec
file into an executable Silver module (dll) or SFunction. A typical spec file looks as
follows:

01 # specification of sfunction or Silver module
02 hex_file(m12345.hex, TriCore_1.3.1)
03 a2l_file(m12345.a2l)
04 map_file(m12345.map) # a TASKING or GNU map file
05 frame_file(frame.s) # assembler code to emulate RTOS
06 frame_set(STEP_SIZE, 10) # Silver step size in ms
07 frame_set(TEXT_START, 0xa0000000) # location of frame code
08
09 # functions to be simulated, in order of execution
10 task_initial(ABCDE_ini)
11 task_initial(ABCDE_inisyn)
12 task_triggered(ABCDE_syn, trigger_ABCDE_syn)
13 task_periodic(ABCDE_20ms, 20, 0)
14 task_periodic(ABCDE_200ms, 200, 0)
15
16 # interface of the generated sfunction or Silver module
17 a2l_function_inputs(ABCDE)
18 a2l_function_outputs(ABCDE)
19 a2l_function_parameters_defined(ABCDE)

3

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

��� �����������������������

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

a Windows PC with Intel i5 processor at 2.4 GHz and 2.92 GB RAM. Average
execution times found this way are shown in Table 1.

��������� �������������������� "#�

Infineon tsim 919.15 sec 0.41
Silver module 9.30 sec 40.80
Table 1: Performance of chip simulation for the BGLWM example

The ECU considered here (MED17 with TC1797) runs at 200 MHz and has a
performance of about 300 MIPS. Nevertheless, on the ECU, the execution time for
the 3.5 minutes scenario is of course exactly 3.5 minutes, due to the real time
constraint. On a PC, this function runs 20 times faster.

��$� ��	����������������������"��%�&'
�����(

Silver can also turn a spec file as described in section 2.1 into a SFunction, i.e. a
mexw32 file that runs in Simulink. This is particularly interesting when using chip
simulation to support automated optimization of parameters, because many
optimization tools are implemented on top of MATLAB/Simulink. The generated
SFunction accepts all characteristics listed in the spec file as SFunction parameters.
This makes it easy to connect the generated SFunction with an optimization
procedure. For example, the SFunction can be called with workspace variables that
are then automatically varied by the optimization procedure between SFunction calls.
The performance of a generated SFunction is again about 40 MIPS.

!���		�������������������������	���������������������	���������

We have combined chip simulation as described above with a procedure for
numerical optimization to compute optimal values for certain engine parameters.
These computations require an accurate and fast model of the engine function of
interest. In the past, we have used hand-coded models of ECU functions, developed
with MATLAB/Simulink. This has been time consuming and error prone. We have
now partially replaced these hand-coded models with SFunctions generated
automatically by Silver from a given hex file. The generated SFunctions proved to run
as fast as their hand coded counterparts. The replacement of hand-coded floating-
point models by generated fixed-point SFunctions raises the following problem:
Some optimization procedures require gradient information to guide the search for
optimal parameter values: When searching for an � that minimizes f(�), the derivative
df/dx is to be computed during optimization for different values of x. Finite differences
are often used here: df/dx is computed as (f(x + h) - f(x)) / h for small h, say h = 10-6.
If f is computed using chip simulation, x and x+h are often both mapped to the same
integer, resulting in a zero gradient. As a consequence, the optimization procedure is
lacking guidance, and might return a suboptimal solution.
This section presents ideas how to overcome this problem and some results of
numerical experiments. There are also so-called derivative-free procedures for
optimization. Obviously, these are not affected by the above problem. This is
exploited in [8].

6

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

!���%������)�������	����������

Optimization in engine development can frequently be formulated as least-squares
optimization. The objective is then to minimize a goal function

g x=∑
i=1

m

f i
2 x

(1)

where x is a vector of n real valued parameters. A typical application is curve fitting.
The engine controller contains a function model(x, t) that estimates a physical quantity
that the controller cannot measure directly. This model needs to be calibrated by
choosing parameters x such that a measured series of m data points is predicted by
the model as good as possible, i.e. the squared sum of the m real-valued residuals

f i x=modelx , t i−measurementti (2)

gets minimized. In typical applications, there are hundreds of data points and
parameters.

Algorithms typically used for least-squares optimization approximate for different
choices of x the Jacobian

J i , j x=lim
h 0

f i s x , j ,h− f i x
h

sk x , j ,h=if j=k thenxkhelse xk

(3)

to determine at a given point x in parameter space the direction of steepest descent
of g(x). Each element of the above Jacobi matrix is typically approximated by a finite
difference

Di , j x=
f i s x , j ,h− f i x

h
(4)

with sufficiently small h, say h = 10 -6.

!�����	������*�������	����������

Engine controllers are frequently implemented using fixed-point code, i.e. all
computations are performed using integers, not floating point numbers. As a
consequence, when implementing the goal function g

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

In general, when optimizing goal functions implemented using chip simulation with

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

rugged landscape seen in Fig. 2d and h. The constant factor k is introduced to
compensate this. For example, choosing k = 10 averages the derivatives across 10
grid points, which reduces the noise generated by integer rounding.

For given x, each element of the matrix H(x)

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

One interesting point is cross-comparison of found solutions: The hand coded
Simulink model generated a solution xOptSimulink with

gSimulink(xOptSimulink) = 0.0148
while optimisation with chip simulation generated a slightly different solution
xOptChipsim with

gChipsim(xOptChipsim) = 0.0149
Cross-comparison shows that both goal functions define slightly different optima:

gSimulink(xOptChipsim) = 0.0200
gChipsim(xOptSimulink) = 0.0217

The goal function gChipsim is however a bit accurate model of the computation of the
real engine controller, while gSimulink is a hand-coded model with a certain modeling
error. We therefore believe that on the real engine controller, the solution found by
chip simulation performs effectively better (0.0149) than the one found by the hand-
coded Simulink model (0.0217).

$������������

As demonstrated above, an ECU hex file compiled for some target processor can be
executed by the virtual ECU tool Silver on Windows PC, either open-loop driven by
measurements or in closed-loop with a vehicle model. Depending on the application,
selected ECU functions are simulated, or nearly the entire ECU. As shown in section
3, such chip simulations can be coupled with optimisation procedures.

This kind of simulation opens new possibilities to move development tasks from road,
test rig or HiL to PCs, where they can be processed faster, cheaper or better in some
respect, without requiring access to the underlying C code. Daimler currently uses
this innovative simulation approach to support controls development for gasoline and
diesel engines, see also [8]. Other applications, such as online calibration on PC via
XCP seem to be doable as well.

-���������

[1] A. Junghanns, R. Serway, T. Liebezeit, M. Bonin: Building Virtual ECUs Quickly
and Economically, ATZ elektronik 03/2012, Juni 2012. See www.ATZonline.de
or http://qtronic.de/doc/ATZe_2012_en.pdf

[2] H. Brückmann, J. Strenkert, U. Keller, B. Wiesner, A. Junghanns: Model-based
Development of a Dual-Clutch Transmission using Rapid Prototyping and SiL.
International VDI Congress Transmissions in Vehicles 2009, Friedrichshafen,
Germany, 30.06.-01-07.2009. http://qtronic.de/doc/DCT_2009.pdf

[3] K. Röpke (ed.): Design of Experiments (DoE) in Engine Development -
Innovative Development Methods for Vehicle Engines. Expert Verlag, 2011.

[4] T. Blochwitz, M. Otter et. al.: Functional Mockup Interface 2.0: The Standard for
Tool independent Exchange of Simulation Models. 9th International Modelica
Conference, Munich, 2012.

[5] SystemC, Language for System-Level Modeling, Design and Verification, see
www.systemc.org

11

7th Conference on Design of Experiments (DoE) in Engine Development, Berlin, 18. – 19.06.2013

[6] M. Tatar, R. Schaich, T. Breitinger: Automated test of the AMG Speedshift DCT
control software. 9th International CTI Symposium Innovative Automotive Trans-
missions, Berlin, 2010.

