

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

• on a PC, a calibration tool like INCA (ETAS) or CANape (Vector) can be
connected to a virtual ECU via XCP to measure into a running simulation and

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

models can be imported from many simulation tools into Silver, including
MATLAB/Simulink, Dymola, SimulationX and MapleSim, e.g. through the FMI format
for model exchange [4].

However, sometimes C code is not available for implementing a virtual ECU. There
are two main sources for such a situation:

• Protection of intellectual property: All or major parts of the ECU have been
developed by a supplier and the OEM interested in building a virtual ECU (e.g.

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

The tasks of categories 1 and 3 typically depend on details of the particular chip, and
on the ECU hardware. In contrast, tasks of category 2 are fairly independent from
such hardware-specific details. To simulate ECU code, it is therefore convenient to
run only tasks of category 2. The required inputs for these tasks can either be taken
from measurement files (open-loop simulation), or they are computed online by some
plant model (closed-loop simulation), bypassing the tasks of category 1. Likewise,
the outputs of category 2 tasks can be directly compared to measurements (open
loop) or fed into the plant model (closed loop), bypassing the category 3 tasks. The
signal interface between categories 1-2 and 2-3 is typically well documented and
available, e.g. from the CAN specification (DBC file) of the ECU.

This modelling strategy has a very good cost-benefit ratio. In order to simulate also
the tasks of categories 1 and 3, one has to model hundreds or peripheral and chip
specific registers, and to build state-machine models for low-level peripherals, such
as CAN controllers. Technically, this is possible, e. g. with SystemC [5], but hardly
justified by the added value, at least for the applications considered here.

Silver 2.5 uses a specification file (similar to the OIL file used to configure OSEK) to
specify, which tasks of a hex file to simulate. Silver automatically turns such a spec
file into an executable Silver module (dll) or SFunction. A typical spec file looks as
follows:

01 # specification of sfunction or Silver module
02 hex_file(m12345.hex, TriCore_1.3.1)
03 a2l_file(m12345.a2l)
04 map_file(m12345.map) # a TASKING or GNU map file
05 frame_file(frame.s) # assembler code to emulate RTOS
06 frame_set(STEP_SIZE, 10) # Silver step size in ms
07 frame_set(TEXT_START, 0xa0000000) # location of frame code
08
09 # functions to be simulated, in order of execution
10 task_initial(ABCDE_ini)
11 task_initial(ABCDE_inisyn)
12 task_triggered(ABCDE_syn, trigger_ABCDE_syn)
13 task_periodic(ABCDE_20ms, 20, 0)
14 task_periodic(ABCDE_200ms, 200, 0)
15
16 # interface of the generated sfunction or Silver module
17 a2l_function_inputs(ABCDE)
18 a2l_function_outputs(ABCDE)
19 a2l_function_parameters_defined(ABCDE)

The hash # character starts a comment, which is ignored by Silver. The spec file first
lists the required files (line 2-5). The map file is optional. If a map file is given, the

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

emulation. For event triggered tasks, Silver offers two alternative event models. Line
12 shows a function that is executed n times at each Silver step, where n is the value
of the input variable trigger_ABCDE_syn at the beginning of the step. Typically, n
is 0 or 1 during simulation. Higher values occur only, when more than one trigger
event occurs during one step. Silver also offers a more accurate event model, that
allows execution of an event triggered task at exact event time, not just at the
beginning of a step.

Finally, lines 17-19 define the inputs, outputs and parameters of the generated
module or SFunction. In this case, we just reuse the interface of a FUNCTION
element of the a2l file, for a function called ABCDE. It is also possible, to list
individual variables here by name, as long as their properties (such as address,
conversion rule, data type) are described in the a2l file.

In addition, the spec file offers means to specify
• properties of the XCP emulation, if any, to support online calibration and

measurement using tools such as INCA and CANape
• data sections to be included into the generated Silver module or SFunction.

This way, initial loading of the hex file into simulated memory can be avoided,
to speed up simulation.

• memory areas to be copied to other (faster) memory by the start-up code
• functions to be replaced by other functions. This way, a function called by a

task of category 1 or 3 to access sensors or actuators can be replaced by a
function that directly accesses a plant model or measured values instead.

• logging options, e.g. to track memory access during simulation

The Silver module or SFunction generated this way performs exactly the same
computations on PC, as on the real target, since the effect of every machine
instruction on memory and chip registers is exactly simulated on PC. However:

• simulation is just instruction accurate, not cycle accurate. This means, the
simulation on PC cannot be used to exactly predict execution time on the real
target. For example, pipeline effects of different access times to memory (e.g.
fast on-chip RAM vs. external RAM) are not modelled.

• conceptually, simulated tasks execute infinitely fast. This means that the
emulated RTOS never interrupts a task. The corresponding effects cannot be
analysed using the generated model.

• Silicon bugs are not simulated. If a compiler for the real target does not work

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

instruction. It is also possible to set code and data breakpoints, for example to pause
a simulation whenever a certain variable is accessed.

���� ����	�
��	��

In order to measure the execution speed of chip simulation, we have ported a
complex ECU function implemented by 5 different C functions that run initially, every

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

���� ������	�
����	�����	������� �! "#$	���	�%

Silver can also turn a spec file as described in section 2.1 into a SFunction, i.e. a
mexw32 file that runs in Simulink. This is particularly interesting when using chip
simulation to support automated optimization of parameters, because many
optimization tools are implemented on top of MATLAB/Simulink. The generated
SFunction accepts all characteristics listed in the spec file as SFunction parameters.
This makes it easy to connect the generated SFunction with an optimization
procedure. For example, the SFunction can be called with workspace variables that
are then automatically varied by the optimization procedure between SFunction calls.
The performance of a generated SFunction is again about 40 MIPS.

�� Applications of chip simulation

In this section, we shortly sketch current applications of the presented approach at
Daimler.

���� "&��������%�����'	�(�)��*�

During development of an engine controller, a developer might want to replace a
certain function of the ECU by its own version of that function, bypassing the original
function. For real ECUs, this can be done with tools such as EHOOKS (ETAS) or No-
Hooks (ATI). These tools manipulate the original hex file, such that the bypassed
function is not executed any more, but just calls the new function instead. The new
function is e. g. developed with MATLAB/Simulink in conjunction with a code
generator and a compiler for the target processor. This methodology still requires
access to the real ECU: the manipulated hex file needs to be flashed into the ECU,
and the ECU needs to run the new function, such that its behaviour can be assessed.
In order to further simplify the assessment of the new function, we execute the
manipulated hex file in Silver on PC using chip simulation as described above. Such
simulations are typically driven open loop by measurement files (MDF).

The placing of bypass hooks by direct manipulation of the hex file is a mighty but
error-prone tool. Sometimes a hooked function is not called at all or only some

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

with MATLAB/Simulink. This has been time consuming and error prone. We have
now partially replaced these hand-coded models with SFunctions generated
automatically by Silver from a given hex file. The generated SFunctions proofed to
run as fast as their hand coded counterparts. The replacement of hand-coded
floating-point models by generated fix-point SFunctions raises the following problem:
Some optimization procedures require gradient information to guide the search for
optimal parameter values. For example, when searching for an x that minimizes f(x),
the derivative df/dx is to be computed during optimization for different values of x.
Finite differences are often used here, i.e. df/dx is computed as (f(x + h) - f(x)) / h for
small h, say h = 10-6. If f is computed using chip simulation, x and x+h are often both
mapped to the same integer, resulting in a zero gradient. As a consequence, the
optimization procedure is lacking guidance, and might return a suboptimal solution.
There are also so-called derivative-free procedures for optimization. Obviously, these
are not affected by the above problem.

�� Conclusions

As demonstrated above, an ECU hex file compiled for some target processor can be
executed by the virtual ECU tool Silver on Windows PC, either open-loop driven by
measurements or in closed-loop with a vehicle model. Depending on the application,
selected ECU functions are simulated, or nearly the entire ECU.

This kind of simulation opens new possibilities to move development tasks from road,
test rig or HiL to PCs, where they can be processed faster, cheaper or better in some
respect, without requiring access to the underlying C code. Daimler currently uses
this innovative simulation approach to support controls development for gasoline
engines. Other applications, such as online calibration on PC via XCP seem to be
doable as well.

References

[1] A. Junghanns, R. Serway, T. Liebezeit, M. Bonin: Building Virtual ECUs Quickly
and Economically, ATZ elektronik 03/2012, Juni 2012. See www.ATZonline.de
or http://qtronic.de/doc/ATZe_2012_en.pdf

[2] H. Brückmann, J. Strenkert, U. Keller, B. Wiesner, A. Junghanns: Model-based
Development of a Dual-Clutch Transmission using Rapid Prototyping and SiL.
International VDI Congress Transmissions in Vehicles 2009, Friedrichshafen,
Germany, 30.06.-01-07.2009. http://qtronic.de/doc/DCT_2009.pdf

[3] K. Röpke (ed.): Design of Experiments (DoE) in Engine Development -
Innovative Development Methods for Vehicle Engines. Expert Verlag, 2011.

[4] T. Blochwitz, M. Otter et. al.: Functional Mockup Interface 2.0: The Standard for
Tool independent Exchange of Simulation Models. 9th International Modelica
Conference, Munich, 2012.

[5] SystemC, Language for System-Level Modeling, Design and Verification, see
www.systemc.org

[6] M. Tatar, R. Schaich, T. Breitinger: Automated test of the AMG Speedshift DCT
control software. 9th International CTI Symposium Innovative Automotive Trans-
missions, Berlin, 2010. http://qtronic.de/doc/TestWeaver_CTI_2010_paper.pdf

8

to be presented at: 9. Symposium Steuerungssysteme für automobile Antriebe, 20.-21.9.2012, Berlin

��� ������.

Dr. Jakob Mauss, QTronic GmbH, Alt-Moabit 92, 10559 Berlin
Matthias Simons, Daimler AG, 70546 Stuttgart

9

