


1  Introduction

The complexity of vehicle engine and 
transmission systems is steadily increas-
ing. One of the reasons is the increasing 
market expectation with respect to the 
engine and transmission efficiency, agili-
ty, driving pleasure and emissions. This 
multitude of market demands can only 
be achieved by combining robust me-
chanics with intelligent software. An ex-
ample for this development is the MCT 
7-speed sports transmission, where a 
compact, wet start-up clutch replaced the 
conventional torque converter [1]. For 
controlling the start-up clutch new soft-
ware modules had to be developed and 
integrated into the existing software of 
the 7G-Tronic transmission. In addition 
to the already existing test procedures, 
such as Hardware-in-the-Loop (HiL) tests, 
test bench investigations, and road trials 
with physical prototypes, a new method 
based on automatic test generation was 
used for the test and validation of the 
software modules. This new method al-
lowed for significantly improved test cov-
erage and testing efficiency. The goal of 
this automation is a comprehensive sys-
tem test, maximizing the relevant system 
states that are reached and tested.

2  The Environment for  
Model-based Software Test

The method explained here is used for 
testing complex software modules. Such 
modules can be tested only in closed-loop 
interaction with the controlled physical 
subsystem due to the feedback interac-
tion of the software functions with the 
dynamics of the physical subsystem. For 
this purpose we use a testing environ-
ment that allows coupling the vehicle 
simulation with the software modules 
that are to be tested. As a test generator 
we use TestWeaver, a tool developed by 
QTronic. During the design process the 
test method is repeatedly used for find-
ing faults and weaknesses of the software 



fidelity of this model determines which 
software functions of the transmission 
control can be tested with which quality 
expectations. The complex dynamic be-
haviour of the transmission is described 
with the object-oriented modelling lan-
guage Modelica [4]. The model includes 
planetary gear trains, shafts, clutches and 
brakes, the hydraulic module, oil supply, 
and the electronic module. A special at-
tention has been given to the models of 
the components that play a major role in 
the control of the transmission: the start-
up clutch, internal clutches and brakes 
and the hydraulic control. Possible com-
ponent faults, selected based on a risk 
analysis, are modelled as well, and can be 
activated and deactivated during the simu-
lation. Further components of the model 
are: engine, cardan shaft, differential, 

braking system, street-wheel contact and 
car body. The model is calibrated to with-
in 10 % deviation from test bench and ve-
hicle measurements for both static and 
dynamic effects. The result is a model for 
the longitudinal dynamics of a vehicle 
drive that allows the simulation of all 
driving and fault scenarios that are rele-
vant for the transmission.

2.3  The Software under Test
Those software modules that require 
testing are integrated into the test envi-
ronment as a DLL. Depending on the de-
velopment phase, different description 
forms for the software structure, behav-
iour, variables and parameters can be 
used. In the application example pre-
sented here a SiL test is described, i.e. the 
original C-code of the transmission is in-

tegrated without modification in the test 
environment. In order to facilitate the 
communication between the software 
controller and the simulation model 
some low-level functions of the transmis-
sion control unit have been emulated. 
The resulting software DLL is executed 
with the same cycle rate as in the real 
transmission control unit.

2.4  The Simulation Environment
The plant model and the software mod-
ules of the transmission are executed cy-
clically by co-simulation, e.g. every 10 ms. 
The modules exchange computed signal 
values among themselves at each cycle. 
This way, the interaction of the software 
and the vehicle hardware can ‘virtually’ 
be recreated and tested on a PC. 



“critical” system states. TestWeaver ac-
tively attempts to “construct” test cases 
that worsen the quality of the system be-
haviour. The evaluation criteria indicat-
ing good or bad quality are defined when 


