

1. Motivation

Increasing pressure to save time and cut costs in the development and testing of
more and more complex automotive systems requires improved methods for
development and testing. Software-in-the-

CAN bus

CAN node A CAN node B CAN node C CAN node D

msg_5_rx

msg_1_rxmsg_1_rx

msg_5_tx msg_2_tx

msg_1_tx msg_3_rx
msg_2_rx

msg_3_tx

Figure 1: CAN bus

CAN communication is affected by slight variations in transmission delay or even lost
messages. Higher-level protocol layers may implement measures to deal with such
effects in the transport layer. Messages may contain CRCs and message counter
signals in order to ensure message and protocol integrity.

Figure 2: Silver GUI with example CAN

To improve or even remove problem 1) and 2), it is possible to implement modules

 : Receive a physical signal value from the
corresponding message as received previously

 : Send a physical signal value with the next
corresponding message

 : Equivalent to , just
with a raw signal value

 : Equivalent to , just
with a raw signal value

For handling signals and messages, raw and physical values, sending cyclic
messages and messages on demand, SBS needs a CAN specification in form of a
DBC file:

 : Configures the CAN communication with
◦ the CAN bus ID for distinguishing multiple CAN buses in Silver,
◦ the DBC file defining the current network,
◦ the node name that this Silver module enacts (possibly a number of node

names if this Silver module simulates multiple CAN nodes, such as a rest
bus simulation),

◦ a number of flags to influence the behavior of the CAN functions, and
◦ optionally the name of a file specifying a list of messages (not) to be sent

and received (by message ID or message name)
 : In case a DBC file is not available, cannot be

published or tool support for DBCs is missing, SBS offers a function to add
(and configure) one message at a time. Signal extraction is not supported in
this case, only 8-byte messages can be received and sent.

 : When changing the content of a message by
inserting signal values, the project-specific CRC for this message will be
invalid. Moreover, some messages require message counters to be
incremented in a project-

3.4 DBC files to specify the behavior of a CAN node

Using DBC files to specify the behavior of a node in a (virtual) CAN network is
convenient, reduces the chances of errors and permits fast introduction of updates,
as DBC files are usually well maintained and tested by many engineers. The use of
DBC files this early in the development process also helps to test and debug these
DBC files.
Silver permits building modules with SBS where the DBC files can be specified at
runtime, allowing the end user to incorporate newer versions of the DBC if necessary
without rebuilding the module itself.
Changing the DBC file after coding may cause critical problems at runtime, because
of the signal names used in the C code. If, for instance, a signal was renamed or
removed from a message in the DBC file, the C code will still query its value and
create a runtime error. A safe change is a change in how a signal is coded inside a
message, as those details are hidden from the C code.

3.5 Accessing physical CAN networks from Silver

Silver offers a convenient way of accessing physical CAN networks (Figure 4). A
specialized Silver CAN module lets Silver access a CAN network device and
communicate through it with all the other devices on that physical CAN bus.
At the moment, this solution supports accessing Vector CAN cards and CAN USB. A
hardware abstraction layer allows easy addition of other CAN hardware in the future.
The Silver CAN module is configured using a DBC file and the network node name
Silver is enacted. The CAN module automatically generates its own input and output

4. Example

IAV uses the newly developed CAN support to set up an improved SiL simulation of a
transmission control software in mass production.

4.1. General setup

The setup consists in principle of a virtual ECU with control software and an
environment model. The following diagram sketches this setup. For a detailed
description see [3].

Figure 5: SiL setup for transmission control software

Data exchange between those main simulation components uses exactly the same
interface definitions as in the car (CAN with more than 30 relevant messages, less
than 20 input ports and less than 20

Figure 6: Silver CAN block in Simulink

The DBC file defines a large number of messages being sent on the CAN network,
many of which are not part of the required CAN rest bus (Figure 7). A white list of
CAN messages (by ID) is used to reduce this list of the DBC-defined messages to
the CAN messages actually used in the SiL. A black-list approach is also possible but
is less convenient here because of the number of signals to be excluded.
The SiL setup uses a Silver CAN module for mirroring the SiL-internal CAN bus to a
Vector virtual CAN bus. This enables reading of all CAN messages by CANape in

4.3. Example summary

The described solution drastically simplifies the setup of the SiL system compared to
previous, non-SBS-based setups. It reduces the amount of work for SiL signal
mapping by using existing standard CAN definitions.
It makes the simulation even more realistic and lets users compare signal sequences

