
What is Fuzzing:
The Poet, the Courier,
and the Oracle

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 3

Summary
Fuzzing is well established as an excellent technique for locating vulnerabilities in software. The basic premise
is to deliver intentionally malformed input to target software and detect failure. A complete fuzzer has three
components. A poet creates the malformed inputs or test cases. A courier delivers test cases to the target
software. Finally, an oracle detects if a failure has occurred in the target. Fuzzing is a crucial tool in software
vulnerability management, both for organizations that build software as well as organizations that use software.

1. Fuzzing in the context of software
Fuzz testing, or fuzzing, is a type of software testing in which deliberately malformed or unexpected inputs are
delivered to target software to see if failure occurs.

In this paper, we use software to mean anything that is compiled from source code into executable code that
runs on some sort of processor, including operating systems, desktop applications, server applications, mobile
applications, embedded system firmware, systems on a chip, and more.

When a piece of software fails accidentally due to unexpected or malformed input, it is a robustness problem.

In addition, a diverse cast of miscreants actively seeks to make software fail by delivering unexpected or
malformed inputs. When software fails due to deliberate attack, it is a security problem.

A software failure that causes harm or death to humans is a safety problem.

Robustness, security, and safety are three faces of the same hobgoblin, software bugs. A bug is a mistake made
by a developer; under the right conditions, the bug is triggered and the software does something it was not
supposed to do. Improving robustness, security, and safety is a matter of finding and fixing bugs.

1.1. Positive and negative testing
Historically, software testing has focused on functionality. Does the software work the way it’s supposed to
work? In functional testing, a type of positive testing, test developers create code and frameworks that deliver
valid inputs to the target software and check for the correct output. For example, if we press the big red button
(deliver an input), does the software turn on the city’s power grid (correct output)?

In a traditional software development methodology, the software design is a list of requirements for the target
software. The test development team has a fairly straightforward task of translating the design requirements into
test cases to verify that the software is performing as described in the specification.

Functional testing is certainly important—the target software must behave as expected when presented with
valid inputs. However, software that is only subjected to positive testing will fail easily when released into a
chaotic and hostile world.

The real world is a mess. It is full of unexpected conditions and badly formed inputs. Software must be able to
deal with other software and people who will supply poorly formed inputs, perform actions in unexpected order,
and generally misuse the software. Negative testing is the process of sending incorrect or unexpected inputs to
software and checking for failure.

Be aware that different negative test tools will produce different results for the same test target. Each tool works
differently and will test different kinds of badly formed inputs on the target software.

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 4

1.2. Software vulnerabilities
Bugs are also known as code vulnerabilities. In the world of software, vulnerabilities come in three flavors:

1. Design vulnerabilities are problems with the design of the software itself. For example, a banking website
that does not require users to authenticate has a serious design vulnerability. In general, design vulnerabilities
must be hunted and killed by humans—automated tools simply do not exist at this level.

2. Configuration vulnerabilities occur when the setup of a piece of software has exposed a vulnerability. For
example, deploying a database with default (factory-installed) administration credentials is a configuration
vulnerability. While there are some automated tools that can assist in locating configuration vulnerabilities,
much of the seek-and-destroy work must be performed by humans.

3. Code vulnerabilities are bugs. Positive testing, with manually coded test cases, can be used to find and fix
bugs related to functionality. Negative testing, which can be heavily automated, can be used to improve the
robustness and security of the software.

In addition, software vulnerabilities are unknown, zero-day, or known.

1. An unknown vulnerability is dormant. It has not been discovered by anyone.

2. A zero-day vulnerability has been unveiled by one person or a team or organization. A zero-day vulnerability is
not published. The builder and users of the affected software are most likely unaware of the vulnerability. No
fixes or countermeasures are available.

3. A known vulnerability is published. Responsible vendors release new versions or patches for their software to
address known vulnerabilities. While fuzzing is typically used for locating unknown code vulnerabilities, it can
also trigger vulnerabilities caused by poor design or configuration.

1.3. Black, white, and gray box testing
In black box testing, the test tool does not have any knowledge of the internals of the target. The tool interacts
with the target solely through external interfaces.

By contrast, a white box tool makes use of the target’s source code to search for vulnerabilities. White box testing
encompasses static techniques, such as source code scanning as well as dynamic testing, in which the source
code has been instrumented and rebuilt for better target monitoring.

Gray box tools combine black box and white box techniques. These tools interact with the target through its
external interfaces, but also make use of the source code for additional insight.

Fuzzing can be black box or gray box testing. This flexibility makes fuzzing an extremely useful tool for testing
software, regardless of the availability of source code or detailed internal information. As a black box technique,
fuzzing is useful to anyone who wants to understand the real life robustness and reliability of the systems they
are operating or planning to deploy. It also is the reason why fuzzing is the number one technique used by black
hat operatives and hackers to find software vulnerabilities.

Even without source code, the ability to more closely monitor the vitals of the target software improves the
quality of the testing. Log files, process information, and resource usage provide valuable information that can be
used during fuzzing to understand how the anomalous inputs are affecting the target system.

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 6

3. The oracle determines if the target has failed. Not all fuzzers implement all three parts, but to harness the
power of automated fuzzing, all parts should be present.

When using fuzzers to improve robustness and security, the end goal is not just finding bugs, but fixing bugs.
A useful fuzzer must keep records, produce actionable reports, and provide a smooth remediation process to
reproduce failures so that they can be fixed

1.6. Zooming out: vulnerability management
A fuzzer will not solve all of your problems. It must be part of an arsenal of tools and part of a process for
software vulnerability management. Other tools that you might also use for software vulnerability management
are as follows:

• Manual security reviews

• Reverse engineering

• Static binary code analysis

• Known vulnerability scanning

• Patch management tools

• Fuzz testing

1.7. Zooming all the way out: risk management
Software vulnerability management is part of a larger picture—risk management. An organization seeking to
lower, or at least understand, its overall risk will use software vulnerability management in conjunction with other
risk management techniques. Fuzzing is a powerful technique for assessing the robustness and security of
software, which is directly related to risk.

Now that you understand who uses fuzzing, how fuzzing relates to other software testing techniques, and where
fuzzing is used in the world of vulnerability management, we will move ahead by discussing techniques and
algorithms used in fuzzing.

2. The poet
Fuzzing is an infinite space problem. For any piece of software, the set of invalid inputs is unbounded. An
effective poet must be clever enough to craft test cases that are most likely to trigger bugs in the target software.
In essence, this comes down to having a poet that creates test cases that are close to what the target expects,
but malformed in some way.

The method of generating test cases has a profound effect on the quality of the test case material.

The end goal is not just finding bugs, but fixing bugs.

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r7

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 8

The Synopsys Universal Fuzzer (Defensics UF or DUF) is another example of an enhanced template fuzzer. DUF
uses a collection of valid files (a corpus) as the basis of test cases. DUF analyzes the valid files to infer their
structure and create high-quality test cases for the target.

Corpus distillation is a method for overcoming some of the limitations of template-based fuzzing related to
quality of the templates. Corpus distillation finds and selects the templates that will be used to create test cases.

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 9

3.1. Network protocol fuzzing
One common application for fuzzing is network protocol testing. A protocol is a set of rules for how different
pieces of software communicate over a network. The code that interprets protocol messages is an attack vector.
Fuzzing is an excellent technique for locating unknown vulnerabilities in protocol-handling code.

Testing network software is further divided into fuzzing different roles and types of components. Many protocols
include concepts of client and server, where the client initiates a connection and the server responds.

In server testing, the job of the courier is straightforward. The target software listens for incoming connections.
All the courier has to do is make a connection to the target server and send a test case.

Client testing is often more complicated. The courier must act like the server, listening for incoming connections.

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 10

providing unexpected or malformed inputs to the UI. For example, in an application on a traditional desktop, a

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r

11.21.1. Eyeballs

Even in an age of heavily automated testing, human observation still has high value and should not be

underestimated. A human who understands the target software can observe its functionality and monitor vital

�p�Ð�°R�p�@W�Y�G�L���E�p�@P�0�I�p��G�I���•W�E�K�I����� ��E�°�Ð��K���G�0�ÐP@X�L�E�€�@TÐ���� �I�` �ÐP@TÀ�PV�H���€�0

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r12

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 14

5. Wrap up
Fuzzing is an excellent technique for locating vulnerabilities in software. The basic premise is to deliver
intentionally malformed input to target software and detect failure. A complete fuzzer has three components. A
poet creates the malformed inputs or test cases. A courier delivers test cases to the target software. Finally, an
oracle detects target failures.

Different fuzzing techniques have a significant effect on fuzzing effectiveness. For the most part, the poet is
more effective when it is able to create test cases that are almost correct, but anomalous in some way. Different
oracle techniques provide varying levels of failure detection capability. Multiple oracle techniques can be used
together to help detect the maximum number of failures.

Fuzzing is a crucial tool in software vulnerability management, both for organizations that create software as
well as organizations that use software. Fuzzing must be deployed as part of a process. Builders use fuzzing as
an integral part of a Secure Development Life Cycle, while buyers use fuzzing as a crucial tool in verification and
validation. Financially speaking, fuzzing saves money simply because it is much less expensive to fix bugs earlier
rather than later. Bugs that are fixed before deployment or product release are no big deal. Bugs that are located
and possibly exploited in production scenarios can be hugely expensive.

In the broader context of risk management, finding and fixing bugs proactively with fuzzing provides protection
against other types of damage. If a bug in your product leads to a catastrophic failure or a massive data breach,
your reputation might not recover and your legal liability could be insurmountable. If you provide a service, such
as healthcare, power, communications, or another critical infrastructure, bugs in the products you’re using could
lead to human harm or environmental damage.

Finding and fixing bugs saves money, protects your customers and your reputation, and in many cases, saves
lives.

Fuzzing saves money simply because it is much less expensive to fix
bugs earlier rather than later.

Explore how the Synopsys Fuzz Testing tool can
 help you build more secure software.

Learn more.

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
/fuzz-test

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r

THE SYNOPSYS DIFFERENCE

https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
/software

