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Introduction
During the design of any optical system destined to be manufactured, it is critical to define 
a fabrication and assembly budget. This budget must consider any potential compensation 
that will be used during the manufacturing process to mitigate the performance degradation 
introduced by fabrication variations. It is important to specify the best set of tolerances and 
compensators, as these will significantly impact the manufacturing costs. The complex process 
of defining system tolerances and compensators is often simply called, tolerancing.

Some minimum tolerances are dictated by the manufacturing process. It is important to 
perform a sensitivity analysis on these tolerances to determine the as-built performance of the 
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In addition to traditional algorithms for calculating tolerance sensitivity, CODE V also includes the Wavefront Differential tolerancing 
method that is extremely fast and accurate. The speed of this method enables tolerancing to be performed frequently throughout 
the design process, not just as an end-of-the-project analysis. The Wavefront Differential tolerancing algorithm can even be invoked 
during optimization itself, allowing direct optimization for tolerance desensitization, including the impact of realistic compensation.

Two Traditional Approaches to Tolerancing
Finite Difference and Monte Carlo are two common tolerancing algorithms. The Finite Difference approach individually varies each 
parameter within its tolerance range and analyzes the resulting system performance for each tolerance. These individual results 
are statistically combined to yield a total system performance prediction. This method predicts performance sensitivity for each 
tolerance, which helps to identify the individual parameters that are “performance drivers.” To keep unnecessary cost out of a design, 
it is important to have tight tolerances only on those parameters that cause the greatest performance degradation for small changes. 
Only the most sensitive components should warrant the extra cost associated with tight tolerances.

The Finite Difference method does not consider how simultaneous changes in multiple parameters interact; its prediction of overall 
performance is typically optimistic. The effects of multiple tolerance interactions on the system performance are known as cross- 
terms. The Finite Difference method also suffers from numerical precision issues when a tolerance change causes a small difference 
between two very large numbers.

The Monte Carlo approach varies all of the fabrication parameters by random amounts within each tolerance range and typically 
uses optimization to compensate (i.e., refocus) the system. This simulates the performance of a single production unit chosen at 
random. The analysis of this random unit constitutes a single Monte Carlo trial. This process is repeated many times with different 
random perturbations. An accurate statistical prediction of the probability of achieving a particular performance level is generated if 
many trials (typically 100 to 1000) are run. Because all of the parameters are being varied at the same time, the Monte Carlo method 
accurately accounts for cross-terms. However, no information can be obtained from the Monte Carlo analysis about individual 
tolerance sensitivities. As such, you can accurately predict a system’s as-built performance, but you cannot determine the specific 
tolerances that are driving the performance, and therefore cannot select the best set of tolerances to minimize cost.

Both the Finite Difference and Monte Carlo tolerancing methods are computationally intensive, which can be slow. With the Finite 
Difference method, a system’s performance must be analyzed twice for each tolerance parameter (to consider the impact for both 
the plus and minus perturbation), and additionally this is done for every field and lens configuration (zoom). Thus, more complex 
systems will take longer for a tolerance analysis than simpler systems. For example, a triplet typically has over 50 tolerances and 
perhaps 3 fields resulting in over 300 required simulations.

Some optical design software packages utilize polynomial curve-fitting routines during the initial Finite Difference tolerance analysis 
to decrease the computational time required for subsequent tolerance analyses. In this case, the effect of changing a tolerance value 
can be quickly analyzed using the polynomial coefficients. However, this approach is useful only if tolerancing is the last step of the 
design; otherwise, the polynomials will need to be recalculated every time the design changes, adding to the overall time required for 
both design and tolerancing.

In the Monte Carlo approach, the system must be analyzed for every trial. System complexity is less of an issue, but many trials are 
required to achieve an accurate performance prediction. Analyzing a complex system to a reasonable level of accuracy using either 
the Finite Difference or the Monte Carlo method may require many hours (or even days) of analysis time.

Wavefront Differential Tolerancing
The Wavefront Differential algorithm is very fast and combines the best attributes of both the Finite Difference and Monte Carlo 
methods. The Wavefront Differential method provides information about individual tolerance sensitivities (like the Finite Difference 
method) and a more accurate performance prediction, including the effect of cross-terms (like the Monte Carlo method).

The speed of the Wavefront Differential approach is derived from the design of the algorithm. All of the information needed for the 
initial and all subsequent tolerance analyses is obtained from the nominal system by tracing a single group of rays. This single-pass 
approach is extremely fast, even when compared to curve-fitting routines.

The algorithmic foundation for the Wavefront Differential analysis method is based on the work of Hopkins & Tiziani [1], King [2], 
and Matthew Rimmer [3], [4]. The advanced algorithms developed by Mr. Rimmer used in CODE V’s tolerancing feature (TOR) were 
first implemented in CODE V in 1978, decades prior to any other commercial implementation. The CODE V Wavefront Differential 
algorithms have been continually enhanced since they were first introduced, and include many proprietary features and advanced 
capabilities not found in any other software package.
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Figure 1: F/2.5 Double Gauss Lens

Table 2 shows the tolerance set, based on first running the Wavefront Differential tolerancing method in inverse sensitivity mode.In 
this mode, TOR tries to set the tolerance values so that each results in identical performance degradation at the worst case field and 
zoom, after compensation. More sensitive parameters are assigned tighter tolerances, and less sensitive ones, looser tolerances. 
However, the tolerance values must remain between realistic default or user-specified tolerance limits.

C E N T E R E D 



6

Tolerancing Method Computation Time for an Intel ®  Core™ i7 2.7GHz CPU
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Table 3: Speed comparison of tolerancing methods

Using these settings, three tolerance analyses were performed using the described algorithms. Table 3 compares the relative 
speed of the tolerancing methods, and is based on execution for a single processor with the same number of rays in the ray grid 
for each analysis.

The Wavefront Differential and Finite Difference tolerancing methods provide information about individual tolerance sensitivities.
This information allows the designer to determine the tolerance drivers for the system. As an example, Table 4 shows the change 
in performance resulting from a perturbation of a symmetrical tolerance that can be compensated with refocus (i.e., the radius of 
surface 7) and a decenter tolerance that cannot be compensated with refocus, for both methods. The compensation motion is 
analytically calculated with the Wavefront Differential method and determined by optimization in the Finite Difference method. Both 
selected tolerances are among the top 5 most significant tolerances for this system (out of 68 total).

 

Single Tolerance Comparison  

(Delta Radius of surface 7, ± 0.02 0mm)  

Wavefront Differential Results  

Field Change in MTF at 15 cycles/mm  

 + Tolerance  -  Tolerance  

1 (On - axis) +0.01 6 - 0.01 8 

2 (+10 deg ,  
tan )  

+0.0 24 - 0.0 27 

3 (+14 deg ,  
tan )  

- 0.0 14 +0.0 07 

4 ( - 10 deg ,  
rad )  

+0.0 03 - 0.0 05 

5 ( - 14 deg ,  
rad )  

- 0.015  +0.0 13 

Compensator (refocus) Motion  for best 
9T
5.9243 0 4 418.
BT
0.006 Tc 5.9243 5.006 Tc 5.1.006 Tc 0 35.924rl Results

   4606 0 Td
( )Tj
7Tj
9
797e  458Td.506 j
ET
Q
Change in MTF at  56cycles/mult 87Tj
1.818 0 Td
 0 Tw (e)Tj
ET
q
87.087 124.435 207.599 385.39 re
W n
BT
5.9243 0 0 5.92435.455Tw (e)Tj
ET
7.67e590 Tw5249
5.9243 0 4.967-0.00687.0844T420(5967 504.6897ET
Q
c 0 T Td
( )Tj
Tc (n)Tj
18.18
E
1.788T.03 Single  re
W n
e Compariso)Tj
0 Tc ( )Tj
10036(refo160642 re
W n
0.606 0 Td
( )Tj
ET
q
87.5, �.)T.020 mult- ns( + 1 4  d e( + 1 4  d e+14 de(+14 de( 0.  + 0. 05

d
(0.)Tj
0 Tc 0 Tw (0)Tj
1.818 0 Td
(0)Tj
0.606 0 Td
(5)Tj
0.606 0 cc -32.116 -1.788 Td
(d
(0.)Tj
0 Tc 0 TTc (n)Tj
16.9242E
1.788T.03 2
87.087 380.46 56.257 177.952 re
W n
BT
0.006 Tc -0.006 Twd
(()Tj
0.606 0 Td
4
546E
1.242E-0.0BT
5.9243 0 0 5.9243 184.0329 407.7479 Tm
(-)Tj
0.006 Tc 1Tj
06 1.242E-0.08 0 Td
(0)Tj
0.606 0 Td
(3)Tj
0.606 0 Td
( )Tj
9.205 0 Td
(-)Tj
0.006 (refocus) Motio)(refocus) Motio)Tj
0 w (0)Tj
1.818 0 Td
(0)Tj
0.606 0 Td
(5)Tj
0.606 0 Td
( )Tj
0.006 Tc -0.006 Tw -32.4refocus) Motio)9refocus) Motion

(

-05  nn-( (s(0.( + 1 4  d e( + 1 4  d e+14 de(+14 de( 0.  + 0. 05

0.0 05

0.n

(

-03 -0 05 n

(

-05 0 03 - 0.(1 4  d e g,  

(

-03 -Compensator 8refocus) Motio005 3 (+14 derefocus) Motio(1 4  d e g,  

(

-030 05 - nn-(0.(3ET
q .n d Tc 1Tj517 Motio-((m -324.7-0.00tio3ET
q .n d Tc 2Tj
05T
.65490tio((m -324.7-0.00tio



7

Notice that the difference in the predicted MTF degradation across field for the two methods is within 0.006 MTF for the 
compensated tolerance. This small difference is not unexpected, since the compensation solution will be slightly different between 
the two approaches. The predicted performance degradation matches almost exactly (within 0.001 MTF) for the uncompensated, 
decenter tolerance. The predicted refocus for the radius tolerance is within 2 µM for the two methods. Also, the predicted mean plus 
���Ä���E�Q�O�R�G�P�U�C�V�Q�T���O�Q�V�K�Q�P���T�C�P�I�G���H�Q�T���C�N�N���V�Q�N�G�T�C�P�E�G�U���E�Q�T�T�G�N�C�V�G�U���X�G�T�[���Y�G�N�N���H�Q�T���V�J�G���V�Y�Q���O�G�V�J�Q�F�U���
�Y�K�V�J�K�P�������t�/�������6�J�G���R�T�G�F�K�E�V�G�F���R�G�T�H�Q�T�O�C�P�E�G��
degradation due to any of the individual tolerances is similar to these representative examples.
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The final lens form, shown in Figure 5, is only slightly different than the system optimized without SAB (Figure 4), but much less 
sensitive to same set of manufacturing and assembly errors!

Figure 5: F/3.5 inverted telephoto after tolerance desensitization optimization

This paper demonstrates how CODE V’s advanced tolerancing features provide outstanding speed, accuracy, and flexibility, which 
ultimately help to maintain optical system performance while reducing costs during product development and throughout the 
product life cycle.
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